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Abstract-Results of numerical calculations of the buoyancy-induced flow adjacent to a vertical isothermal 
surface with a leading edge are presented. Coordinate transformations have been used to allow efficient 
calculation of both the boundary layer flow and the extensive ambient entrainment in-flow. A motion 
pressure field, which develops owing to the motion pressure deficit at the surface, drives this entrainment. 
Increased boundary layer mass flow results, compared with classical boundary layer theory. Conduction 
into the upstream entrainment region is appreciable, ahead of the leading edge. This flow, below the 
surface, arises as a mass sink for the distant entraining flow. Motion pressure effects determine the flow in 
this leading edge entrainment region and in the entrainment flow arising along such a heated surface. 
Modeling of both these regions is of increasing importance in many technologically important applications, 

such as electronics packaging. 

1. INTRODUCTION 

BUOYANCY-INDUCED flow adjacent to a vertical iso- 
thermal surface, with a leading edge in an extensive 

quiescent fluid, has been a long-studied mechanism of 
buoyancy-induced external flows. Figure 1 shows the 
geometry of such a flow. The surface is assumed to be 
of negligible thickness, with flow on each side. The 
local velocity boundary layer thickness, 6(x), is the 
outward distance at which the streamwise velocity, U, 
is 0.01 of the local maximum value. The temperature 

boundary layer thickness, 6,(x), is the distance out 
from the surface at which the temperature excess of 
the fluid is 0.01 of the imposed temperature excess at 
the bounding surface. The flow region extends down- 
stream and beyond the trailing edge, for a finite 
surface. Many previous studies have considered this 
kind of flow, both adjacent to a surface and far down- 
stream of the leading edge. There the flow becomes 
more vigorous. The buoyancy force drives the flow. 
The Grashof number, Gr, increases downstream. 
Then, the boundary layer approximations apply with 
good accuracy, in this region far downstream of the 
leading edge. The Grashof number is the ratio of the 
buoyancy force to the viscous effect acting on the 
fluid. This may be written as 
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where g is the gravitational acceleration, p is the volu- 
metric coefficient of thermal expansion, At is the sur- 
face temperature excess, x is the distance from the 
leading edge, and v is the kinematic viscosity. FIG. 1. Isothermal vertical surface, showing velocity and 

Boundary layer calculations divide the flow into 
thermal boundary layers with velocity profile u(x,~) and 

two regions, a thin buoyant boundary layer immedi- 
temperature profile t(x,.~). The horizontal scale is expanded 

for clarity. 
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NOMENCLATURE 

U constant in _r-transformation, .Y’ transformed dimensionless vertical 
equation (18) coordinate 

b constant in x-transformation. .X ml” minimum value of the dimensionless 
equation (I 7) vertical coordinate 

(’ constant in .L--transformation, X,,I&X maximum value of the dimensionless 
equation (I 7) vertical coordinate 

f’(v) similarity analysis streamfunction J’ dimensionless horizontal coordinate 

f” derivative of f(y) with respect to q .i; dimensional horizontal coordinate [m] 

.(I local gravitational acceleration [m ss’] J” transformed horizontal coordinate 
Gr Grashof number, defined in equation (1) I’,“,, maximum value of the dimensionless 
Gr,,,;,, Grashof number at the computational horizontal coordinate. 

outflow boundary 

k, constant in .x-transformation, Greek symbols 
equation ( 17) thermal diffusivity [m2 so ‘1 

k, constant in .r-transformation, ; volumetric coefficient of thermal 
equation (17) expansion [T ‘1 

k; constant in r-transformation, 4x) similarity solution boundary layer 

equation (I 7) thickness 

k4 constant in .r-transformation, 6,(x) numerically calculated boundary layer 
equation ( 18) thickness 

I, local motion pressure [kPa] (5, boundary layer theory temperature layer 

P dimensionless motion pressure thickness 
Pr Prandtl number, V/SC 6,,(x) numerically calculated temperature layer 

4” heat flux [W m 2] thickness 

T local fluid temperature [ C] At,, & - 7, , imposed temperature excess at 

f, ambient fluid temperature [’ C] surface [ ‘C] 

11, imposed temperature of the vertical ‘I similarity analysis coordinate 

surface [“Cl 1’ kinematic viscosity [m’ s- ‘1 

u vertical velocity [m s ‘1 ? dimensional time [s] 

u dimensionless vertical velocity r dimensionless time 

r horizontal velocity [m s-‘1 surface shear stress [kPa] 

1’ dimensionless horizontal velocity 2 temperature excess ratio 

.Y dimensionless vertical coordinate 11 strcamfunction 

.? dimensional vertical coordinate [m] (0 vorticity, defined in equation (7). 

ately adjacent to the surface and an outer largely 
inviscid distant isothermal region, throughout the rest 
of the fluid. The viscous forces, interacting with large 

temperature gradients, cause large velocity gradients 
in the boundary region. A streamwise velocity 
maximum exists within the flow. In forced flows, how- 
ever, over a similar surface, the maximum streamwise 
velocity occurs in the freestream. Boundary layer cal- 
culations for both buoyant and forced flows com- 
monly assume a uniform pressure level throughout 
the thin boundary layer and out into the ambient 
region. The streamwise diffusion of momentum and 
energy are neglected in such calculations, since these 
are of the order of the pressure gradients. 

In the regions upstream of the leading edge and far 
from the surface, the buoyancy and viscous forces arc 
both small. Far upstream, the temperature of the fluid 
approaches the ambient condition. In actual buoyant 
flows, a negative motion pressure gradient arises 
throughout this region. This drives the entraining flow 

toward the surface. This gradient results from a 
motion pressure deficit which arises owing to the 

buoyancy-driven entraining flow near the surface. The 
characteristics of this pressure field, and the resulting 
entrainment flow, are very important in many buoy- 
ancy-induced flows. Flows adjacent to discrete 
elements on circuit boards, flows in partially open 
enclosures, and fire induced flows interacting with 

vertical surfaces require consideration of the non- 
boundary-layer effects which arise in the leading edge 
entrainment region of such surfaces, and in the 
entrainment regions farther away from such surfaces. 
The assessment of such induced motion pressure fields 
is very important in determining the actual flow and 
the upstream effects associated with such mechanisms. 

Many studies have examined the buoyancy-induced 
flow adjacent to an isothermal vertical surface. Early 
studies concerned only the approximation of bound- 
ary layer formulations. Later and more extensive stud- 
ies of such transport have led to higher order matched 
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asymptotic approximate solutions of some of the 

additional effects in the Navier-Stokes equations. 
Recently, the effects of the motion pressure, and the 

resulting entrainment flow and growth ofdisturbances 
in transient flows have been studied. A comprehensive 
summary of such studies may be found in Gebhart et 
al. [I]. 

1.1. Eurly boundary layer studies 
The experiments of Schmidt and Beckmann [2] first 

demonstrated that the flow of air adjacent to a heated 
vertical surface formed a boundary layer, as described 

by Prandtl [3] for forced flows. They also described 
the similarity solution for this flow found by E. Pol- 
haussen, for a Prandtl number, Pr = V/LX, of 0.733, 
where tl is the thermal diffusivity. Many researchers 
have extended this analysis to include other values of 
the Pr and many other surface boundary conditions. 
Schuh [4] numerically integrated these equations for 
Pr = 10, 100, 1000. Ostrach [S] numerically integrated 
the similarity equations for a range of Pr including 

those of liquid metals, 0.01 < Pr < 100. LeFevre [6] 
transformed the similarity equations, for asymptot- 
ically large and asymptotically small Pr. These equa- 
tions were then numerically integrated to determine 
the extreme Pr behavior. Nachtsheim and Swigert [7] 
derived a method by which the similarity equations 
may be numerically integrated to within an arbitrary 

accuracy. 
The Navier-Stokes equations, including buoyancy, 

govern this diffusion field. The flow-generated motion 
pressure is a part of the complete formulation. In an 
analysis, streamwise boundary conditions are 

required along the surface and beyond the upstream 
and downstream boundaries of the flow domain. 
However, boundary layer approximations simplify 

the full equations including buoyancy, by assuming a 
zero flow and motion pressure ahead of the leading 
edge of flow. This assumption removes the motion 
pressure as a dependent variable and leaves only the 
,x- and y-direction velocities, and the temperature, to 
be calculated for the buoyancy-driven flow. That is, 
the y-direction force-momentum balance is omitted. 
The y-direction velocity is then found by using mass 

continuity considerations. The full equations are fur- 
ther simplified by neglecting the streamwise diffusion 
of momentum and energy in this flow. That is, parallel 

to the surface, information may travel in only the 
downstream direction. These simple boundary layer 
equations then require streamwise-direction bound- 
ary conditions only at the upstream boundary of the 
computational domain. No boundary conditions are 
needed for the motion pressure, which has been 
ignored in the boundary layer formulation. Therefore, 
the boundary layer approximations commonly apply 
only at downstream locations. These are con- 
ventionally taken to be in terms of the local Grashof 
number, Gr, greater than 104. The effects of motion 
pressure, and of streamwise diffusion, are very impor- 

tant at smaller values of Gr and in the entrainment 

regions outside the boundary layer. 
The simple boundary layer formulation allows simi- 

larity solutions for many kinds of imposed surface 
conditions. All require a zero fluid velocity at the 
leading edge. Figure 2(a) shows the calculated stream- 
lines, for Pr = 0.72. The entrainment flow, toward the 
leading edge, amounts to zero shear flow adjacent to 
a horizontal isothermal surface, at the temperature of 
the ambient fluid. Past finite difference calculations, 

using velocity and temperature variables, commonly 
retain this zero streamwise velocity condition at the 

leading edge. This measure reduces the mass flow rate 
calculated in the downstream flow. Also, an unre- 
alistically high y-direction entrainment velocity arises 

at the leading edge. This effect reduces the error in the 

calculated downstream mass flow rate. 
Figure 2(b) illustrates the effect of the boundary 

layer approximation on the temperature field. 
Neglecting streamwise diffusion suppresses the tem- 

perature excess over the ambient temperature, t,,, in 
the approaching flow region. A temperature effect 
upstream, due to thermal conduction, is not predicted, 
using the boundary layer approximation. The physical 
extent of this field is determined by Pr. The extent of 
this upstream diffusion increases with decreasing 
Pr, that is, with increasing 3. Omitting the actual 
streamwise conduction results in an infinite tem- 
perature gradient near the leading edge, as indicated 
by the convergence of the isotherms at x = 0, in Fig. 
2(b). This lack of realism results in the prediction 

of an infinite local heat flux there. This is integratable. 
under some imposed conditions. 

I .2. Higher order approximations 
Some past analyses have improved the accuracy of 

the transport near the leading edge. The pressure and 

the tangential diffusion terms may be retained in the 
Navier-Stokes formulation, for transient flows and 

for flows at small Cr. Sugawara and Michiyoshi [8] 
calculate the flow due to a step change in the tem- 

perature of a semi-infinite surface having a leading 
edge. Convection terms were ignored in the cal- 
culation of the initial response. After completion of 
the one-dimensional early transient response, the full 
Navier-Stokes formulation was used to continue the 

calculation. Yang and Jerger [9] and Kadambi [IO] 
used perturbation analyzes for moderate Cr. The 
boundary layer solution was the first term in the series, 

Hieber [I I] corrected an error due to improper 

matching considerations in Kadambi [lo] and also 
extended the corrected results, in a second order 
expansion. A first order correction to the global heat 
transfer arose. This correction did not arise from local 
conductive heat transfer from the surface. Instead, it 
was attributed to the presence of a leading edge. This 
increased global heat transfer is analogous to the 
increase in surface shear stress found for forced flow 
over a flat surface with a leading edge, described by 
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FK. 2. (a) Streamlines based on boundary layer assumptions, Pr = 0.72: (b) isotherms based on boundary 

layer assumptions, Pr = 0.72. 
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Imai [12]. The perturbation expansion parameter is 
proportional to negative powers of Cr. This makes 
the inner solutions of both temperature and velocity 
singular at the leading edge. The outer temperature 
field is assumed to be everywhere at the ambient tem- 
perature. Conduction ahead of the leading edge is not 
included, similar to boundary layer theory. Also, the 
singularity of the perturbation parameter does not 
allow any calculation of the motion pressure to be 
calculated at the leading edge. There, it would be 
expected to have its largest magnitude. 

Jaluria [13] used a finite difference calculation to 
model the natural convection flow near several dis- 
crete uniform heat flux sources. These sources were 
imbedded in an otherwise adiabatic vertical surface. 
The first of the discrete uniform heat flux sources was 
located at the leading edge of the vertical surface. The 
model neglected flow entrainment from upstream of 

the leading edge of the surface. A streamfunction- 
vorticity formulation of the full equations was used 
to model the flow, for small Cr. The boundary layer 

equations were solved to represent the flow at large 
Cr. The matching of the boundary layer solution to 
the solution of the full equations provided the outflow 
boundary conditions needed for the solution of the 
full equations. 

1.3. Measurements related to motion pressure effects 
on entrainment 

Early measurements by Pera and Gebhart [14] 
determined the interaction between plane thermal 
plumes and neighboring surfaces. Plumes adjacent to 
a vertical wall were found to attach to the surface, 
downstream. The underlying mechanism for this 

interaction was calculated to be a negative motion 

pressure field induced by the plume. The restricted 

entrainment between the plume and an adjacent sur- 
face causes a motion pressure deficit in the region 
between the plume and the surface. The higher ambi- 
ent pressure on the other side of the plume, in a region 
of unrestricted entrainment, inclines the plume toward 
the surface. 

Agdrwal and Jaluria [ 151 used a numerical cal- 
culation to model the flow of a thermal plane plume 
in close proximity to a vertical adiabatic surface. The 
computational domain was divided into two regions, 
as done by Jaluria [13]. The downstream outflow 
boundary conditions for the full equations were found 
by matching, using a boundary layer type solution, at 
suitably large Cr. Agarwal and Jaluria [I.51 first dis- 
cuss calculations which did not include the induced 
entrainment flow, which arises from below the heat 

source. Subsequent calculations included some 
induced entrainment upflow. The motion pressure 
effect across the plume was computed at several down- 
stream positions, neglecting the upflow entrainment. 

The plume was deflected, towards the vertical surface, 
by the flow-induced pressure deficit between the ver- 
tical surface and the plume, as found by Pera and 
Gebhart [14]. Agarwal and Jaluria calculated the 
difference between the pressure near the surface and 
in the ambient region. It is greatest near the plume 
source and diminishes downstream. Agarwal and 
Jaluria [15] discuss measurements of the position of 
the plume centerline, made using shadow-graphs. 
These measurements confirm the numerical predic- 
tions. Measurements of the temperature profile of the 
plume verified the temperature calculations. 
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Disturbance growth, during the beginning of tran- 

sient flows, is apparently driven by the motion pres- 
sure field. This develops early in the flow. Joshi and 

Gebhart [16, 171 report detailed measurements of dis- 
turbance growth in a flow developing adjacent to a 
vertical surface, subject to a sudden imposition of a 
surface energy flux. Temperature disturbances were 
measured prior to the passage of the leading edge 
effect. Pressure disturbances are the likely mechanism 
by which disturbance information travels down- 

stream, just ahead of or during the propagating 
leading edge effect. This may also be a mechanism for 
disturbance travel in flows after the leading edge effect 
has passed. Clearly, the motion pressure field must be 

included to model fully both the disturbance growth 
and propagation in such flow regions. 

1.4. Related studies of‘ motion pressure effects on 
entrainment 

Boundary layer and higher order approximations 

have been evaluated for the flow in the boundary 
region, downstream of the leading edge. The deter- 
mination of the flow around the leading edge, and in 
the distant entrainment regions, requires an inves- 
tigation of several more subtle effects. The density 
difference, and the buoyancy force, are usually small 

around the surface leading edge and, also, in distant 
entrainment regions. Motion pressure gradients drive 
the in-flow. Also, in this region of relatively low 
velocity, thermal and momentum diffusion upstream 
may be significant. The full equations, including the 
motion pressure field and the streamwise diffusion 
terms, must be used to describe the flow. The x-direc- 
tion diffusion terms require the specification of x- 
direction boundary conditions at two locations. One 
is commonly specified at the upstream leading edge. 
The other is usually specified at some downstream 
outflow location. This downstream location is at a 
value of Gr large enough that the boundary layer 
approximations apply. Several recent studies have 
considered the motion pressure field and its effect on 
the entrainment flow. 

Riley [ 181 analyzed the flow above a horizontal line 
source in an extensive quiescent fluid. The plume flow, 
and the entrainment flow, were calculated using inner 
and outer perturbation expansions, respectively. The 
entrainment flow was also calculated for the addition 
of an adiabatic horizontal surface, below the line 
source. The entrainment flow, in the absence of a 
horizontal surface, was an upflow throughout the 
entrainment region. The addition of an adiabatic hori- 

zontal surface, below the line source, substantially 
changed this entrainment flow. The upstream entrain- 
ment flow changed from an upflow to a predominantly 
horizontal in-flow. Above the line source, the entrain- 
ment flow develops a downward component. The rela- 
tive strength of this component increases downstream 
of the line source. Riley [ 181 also estimated the effect of 
an adiabatic vertical surface adjacent to an otherwise 

unrestricted entrainment flow. A downward com- 

ponent of the entrainment flow was calculated, on 
the unbounded side of the plume. An approximate 

calculation of the motion pressure difference across 
the plume indicated that the gradient deflects the 
plume towards the vertical surface. 

Afird and Zebib [19] considered the natural con- 

vection air cooling of single and multiple uniformly 
heated devices mounted on a vertical surface. The 

effect of conduction, in the solid elements, was 
included in this analysis. A two-dimensional rec- 

tangular region was modeled, with the surface con- 
taining the heated devices at one side. The entrainment 
flow was assumed to cross normal to the boundaries 
of the modeled rectangular region. The streamlines 

and isotherms were, thus, assumed to be normal to 
the chosen distant boundaries. To produce such a flow 
may require additional, tacitly assumed, forces on the 
fluid in this, otherwise, inviscid region. The influence 
of distant boundary conditions is small, at the surface. 
The model may, then, accurately predict the flow 
adjacent to the surface, in the boundary layer region. 
However, such boundary conditions will not 

adequately model the entrainment flow, which is 
driven solely by the induced motion pressure field. 
Afird and Zebib [ 191 formulated the model using vel- 
ocity, temperature and pressure as dependent vari- 

ables. Results were not given for the induced pressure 
field, which is a part of the flow solution. 

A finite element analysis, by Pelletier et al. [20], 

modeled buoyancy-induced flows in a square cavity, 
in an annulus and adjacent to a finite vertical plane 
surface. The results, near the surface, for a flow adjac- 

ent to a vertical flat surface with a leading edge, in 
an extensive medium, were in good agreement with 
previous results. The entrainment flow streamlines 
crossed normal to the distant boundaries of the 
modeled region. As with the results of Afird and Zebib 
[19], such a flow may require additional and tacitly 
assumed forces on the fluid in this inviscid region. 
This indicates that a force, other than the induced 

motion pressure field, is also acting on this inviscid 
entrainment flow. Pressure contours were shown, but 

were not compared with inviscid flow results in the 
entrainment flow region. The isobars were not shown 
in the distant entrained how region. 

1.5. Current study 
There has been very little modeling effort con- 

cerning the motion pressure effects which arise in 

buoyancy-induced flows, even though such induced 
flow effects often determine the local flow. The largest 
magnitude of these effects commonly arises near the 
leading edge of the surface. The boundary layer equa- 
tions do not apply there. Motion pressure is the domi- 
nant force in these entrainment region transport pro- 
cesses. The motion pressure field determines the flow 
effects in the whole region near the leading edge. These 
are nonboundary layer flows. Calculation of 
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additional nonboundary layer mechanisms clearly 
requires the accurate determination of the pressure 
gradients over the whole entrainment region. These 
mechanisms are of increasing importance in the mode- 
ling of disturbance growth in developing flows and in 

the modeling of transport near small and discrete heat 
sources, which arc of increasing importance in many 

applications. 
In the present study, the two-dimensional Navier- 

Stokes and energy equations, that is, the full 

equations, have been integrated numerically, for ste- 
ady-state Row. No boundary layer approximations 
were used. These equations apply throughout the flow 
region and. therefore, govern both the inner viscous 

and the outer inviscid regions. The equations arc 
written by replacing the vclocityypressure transport 
formulation by the streamfunction-vorticity formu- 
lation. By the USC of algebraic transformations. the 
surface and a large part of the distant entrainment 
region are modeled simultaneously. Accurate esti- 

mates of the distant boundary conditions arc obtained 
by placing region boundaries far from the surface, 
in regions of very small velocity, temperature and 

pressure gradients. Thereby, the steady-state velocity 
and temperature fields may be calculated, without the 
need to determine simultaneously the motion 

pressure. The Poisson equation, for the pressure field, 
is then derived from the momentum equations. It is 
then numerically integrated to determine the associ- 
ated motion pressure field throughout the region. 

2. FORMULATION 

2.1. Equations of’conscwution ofmuss, momentum and 

ener:y?~ 

The full Navier-Stokes and energy equations, using 
the Boussinesq approximations, model this flow 
adjacent to an isothermal vertical surface in an exten- 
sivc, quiescent medium. Recall Fig. 1. The energy 

effects of viscous dissipation and pressure work are 
neglected. See Gebhart et al. [l], p. 29. The time- 
dependent form, in dimensional variables and Car- 
tesian coordinates, is 

@a) 

(2b) 

PC) 

(24 

where X and jj are the dimensional Cartesian coor- 
dinates. Also, ? is the time from some initial datum, 
U and t’ are the velocities in the 3- and _?-directions. 

respectively, f is the local fluid temperature, p is the 
local motion pressure, E is the thermal diffusivity and 
v is the kinematic viscosity. The motion pressure is 
the local static pressure less the remote ambient hydro- 
static pressure. 

2.2. Approximation gf’thr boundary conditions 

Boundary conditions for these equations arc to be 
defined on all boundaries. Those at the surface are the 

familiar conditions for a no-slip surface and local 
accommodation at the interface region. Both of the 
velocity components are zero and the tempcraturc of 

the fluid is the assigned surface tcmperaturc, here 
assumed to be uniformly lo. Boundary conditions of 
symmetry. in .c’, are imposed along y = 0, ahead of the 
leading edge. In the limits .U + - x and j --t x. these 
boundary conditions are those of an inviscid flow 
and a distant ambient temperature. The boundary 
conditions are written as 

~=O,.L.&O: u=l;=O,f=t 0 (3a) 

?; = 0, .\: < 0 : iuic7j = r: zz (y/?;j = 0 (3b) 

I; -_$ a : c’U/c:T = (q/(7.?, f = f , (32) 

.u * - x : i;Q,‘pF = ;c/?,f, f = f , (3d) 

The full equations contain second order partial 

derivatives of the velocities and temperature fields in 
both the X- and y-directions. Therefore, two boundary 
conditions, one for each of the X- and the?,-directions, 
are needed for the temperature and both components 
of velocity. Recall that the boundary layer equations 
neglect streamwise diffusion and, therefore, contain 
only first order partial derivatives in the .v-direction. 
These equations then require only one .y-direction 

boundary condition for each of the tcmpcraturc and 
the two velocity components. These arc specified at 
the upstream boundary, located at Gr = 0. 

At the computational outflow boundary, where 

Gr,,,,, = IO’, the exact boundary conditions are not 

immediately apparent. Jaluria [ 131 and Agarwal and 
Jaluria [ 151 have modeled the outflow boundary con- 
ditions for the full equations by matching the numeri- 
cally integrated solution of the boundary layer cqua- 
tions with the numerically integrated solution of the 
full equations. For any given outflow boundary 
location, Jaluria [13] and Agarwal and Jaluria [I 51 
moved the location of the matching location of the 

solutions downstream until there remained no 
appreciable change in their results. The boundary 
layer equations provide a good approximation of the 
Row adjacent to the surface. for suficiently large Cr. 

However, thcsc equations are not valid further out 
from the surface, in the region of the inviscid entrained 
flow. A different approach was taken here. Roach [21] 
suggests that the least restrictive outflow boundary 
condition, which allows convergence of the strc- 
amfunction in numerical forced flow calculations. is 
a zero streamwise second derivative or the stre- 
amfunction. This outflow boundary condition 
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requires the specification of the streamfunction, or its 

first derivative, at the other boundaries. Here, the 

streamwise second derivative of the streamfunction is 

specified as zero, that is ~2$/~x2 = 0, at Gr,,,. 
Likewise, the streamwise diffusion of temperature is 
specified to be zero, &/ax2 = 0, at Gr,,,. This tem- 
perature boundary condition, neglecting streamwise 
diffusion, is consistent with the boundary layer theory 
approximations. 

2.3. Generalized scaled variables 
Nondimensionalization of the equations requires 

characteristic values for the dependent and inde- 

pendent variables. However, there is no apparent 
length scale for the configuration considered here. The 
surface length is not specified a priori. Instead, it will 

be determined as the length at which Gr = 106, where 
boundary layer assumptions may be applied. The sur- 
face is immersed in an extensive medium, which 
extends indefinitely outward from the surface, on both 
sides, and downstream from the leading edge. Also, 
there are no readily apparent choices for the charac- 
teristic velocity, the characteristic time or the charac- 
teristic motion pressure in this buoyancy-induced 
flow. Instead, the variables are scaled by choosing a 
characteristic length such that Gr = 1, at the charac- 
teristic length. The other characteristic quantities are 
defined in such a way as to be consistent with the 
above characteristic length. See Wright [22] for the 

details. Undefined variables are substituted into equa- 
tions (2). The physical variables are written in terms 
of the following six corresponding nondimensional 
variables and the characteristic values as 

lengths : 

velocities : 

tl = u[g~(r,-&)~]‘;~ V = v[gfl(f,-fK)v]“3 (4c,d) 

temperature and pressure : 

+;+, and p = pp[gb(f,- fm)v]2’3. (4e, f) 
0 7 

Typical values correspond to a temperature excess 
t, - t, = 10°C and properties evaluated at 22°C. The 
characteristic length is then 0.89 mm for air and 0.77 
mm for water. The characteristic velocity is 17.2 mm 
s-’ for air and 2.7 mm ss’ for water. The magnitude 
of the characteristic motion pressure, p, is 0.35 x 10m3 
Pa for air and 7.1 x 10m3 Pa for water. 

Substituting the above expressions for the dimen- 
sional variables into equations (2) leads to the fol- 
lowing dimensionless forms 

au au au 

(54 

2.4. Streamfunction-vorticity formulation of the con- 
servation equations 

These equations are in terms of the velocity, tem- 
perature and motion pressure fields. The solution for 
the motion pressure, in an external incompressible 
flow, is very sensitive to the boundary conditions and 

generally converges slowly. See Roache [21]. A 
method often used to eliminate the need to calculate 
the motion pressure, concurrently with the flow field, 

is to introduce a streamfunction which satisfies the 
continuity equation. This allows the two momentum 
equations to be replaced by a vorticity transport equa- 
tion, along with a Poisson equation for the stre- 
amfunction. A Poisson equation, for motion pressure, 
is derived from the momentum equations. The flow 
field is then calculated independently from the motion 

pressure field. After the flow field has been deter- 

mined, the motion pressure field may be calculated in 
a straight-forward manner. 

The streamfunction, $, implicitly defined as 

u = a$/ay and v = -a$/&, satisfies equation (5a), 
automatically. Differentiating equation (5b) by y and 
equation (5~) by x and subtracting the results yields 
the vorticity transport equation 

where the vorticity, w, is defined as 

2 2 

WC - g+g = -v’*. ( .> (7) 

Equation (5d) for temperature excess, r$, becomes 

(8) 

Equations (6)-(8), with the appropriate boundary 
conditions, determine the flow field. 

Boundary conditions for these equations are 
derived from the boundary conditions which apply to 
the equations in velocity and temperature variables. 
Along they = 0 axis these are written as 

y=o,oc~d 100: II,= i-4=0,~= -a*$ja*y 

(94 

~=o,~<o: *=w=a$jay=o. Pb) 

The ambient fluid is truly quiescent only at an infinite 
distance away from the surface, in the steady-state 
flow. As seen in Fig. 3(a), the distant boundaries in 
this calculation are set at large, but finite, distances 
from the surface. Distant boundary conditions must 
be determined which appropriately approximate the 

e!+!?!=() 
ax ay 
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infinite boundary conditions. Far from the surface, 
the temperature excess and the vorticity must be zero. 
unchanged from that of a quiescent fluid. Preliminary 
calculations were used to determine the distance at 

which these distant boundary conditions of zero tem- 
perature excess and zero vorticity may be imposed. 
Increasing the distance of the boundaries. from the 
surface, changed the calculated values of the stre- 

amfunction and vorticity by less than IO ‘. The 
requirements, consistent with these conditions, were 

.Y= -1000: w=4=0 

and 

_I’ = 1000: (11 = 4 = 0. (10) 

The boundary conditions on the streamfunction, 
based on the condition of zero vorticity at distant 
boundaries and on the definition of the stre- 
amfunction in equation (7) are 

x= -1000: V’$=O 

and 

y = 1000: V’IJ = 0. (11) 

These conditions are consistent with having specified 
zero vorticity at the distant boundaries. 

Consistent with this full formulation, the stream- 
wise diffusion terms are retained everywhere, except 
at the upper streamwise outflow boundary. There, 
the boundary conditions were chosen as 

.1’ > 0. s = x,,,, : 

?‘lj/r;x’ = r72wp~= = d’q5li;.u’ = 0. (1.3 

Specifying the second streamwise derivatives of the 
vorticity and the temperature excess as zero is con- 
sistent with the boundary layer theory condition of 
no downstream diffusion of momentum or of thermal 
energy. The zero second derivative of the stream- 
function specifies that the horizontal velocity com- 

ponent is uniform across the outflow boundary, at 
Gr,,, = IO’. As mentioned above, Roache [21] sug- 
gests that this outflow boundary condition is the best 
model of the physical circumstance which still allows 
for convergence of the equation for the stream- 
function. The error introduced by this assumption 
was minimized in the numerical formulation by speci- 

fying a very fine grid spacing in the streamwise dircc- 
tion, at the outflow boundary. 

2.5. Motion pressure equcltion,fbrmulution 

After the flow field has been calculated, the motion 
pressure field may be determined. The Poisson equa- 
tion for motion pressure is derived from equations 
(5b) and (5~). After steady flow is established in the 
calculations, the transient terms in the momentum 
equations have become zero. The steady forms of 
equations (5b) and (5~) are then differentiated with 
respect to x and y, respectively. Adding the differ- 
entiated equations (Sb) and (5~) yields the Poisson 

equation for pressure. The viscous terms of this Pois- 
son equation satisfy equation (5a), identically. The 
equation for pressure then simplifies to 

The terms on the right-hand-side of equation (13) 
contain squared first order derivatives. These terms 

may be simplified by first squaring the mass continuity 
equation, equation (Sa), and writing the result as 

When this result is substituted into equation (13). the 
equation for motion pressure becomes 

All the terms on the right-hand-side of equation 
(15) are known, after the calculation of the flow field. 
The Bernoulli equation may then be used, in the invis- 
cid region, to determine the motion pressure far from 
the surface. At the upper outflow boundary. the stre- 
amwise pressure gradient is specitied as zero, con- 
sistent with conventional boundary layer theory. 

Along the ~7 = 0 axis, ahead of the leading edge. sym- 
metry boundary conditions are used. Adjacent to the 
surface, the pressure gradient may be calculated from 

equation (5~). The resulting boundary conditions for 
the pressure field are then 

r = 0.100 3 .Y 3 0: c’p/ir = ?%/C’V’ (16a) 

1’ = 0. .Y < 0 : i/7:(11‘ = 0 (16b) 

!’ = 1000: p = &2 (16c) 

.Y= -1000: /?=uL/2 (16d) 

.X = IO0 : c:p;i.r = 0. (16c) 

3. NUMERICAL INTEGRATION 

Equations (6)-(8) are expressed in a finite difference 
formulation, for numerical integration. The time- 
dependent nature of the vorticity and temperature 
transport equations is retained. The integration con- 

tinues until the changes of temperature and vorticity 
between successive iterations is less than IO mh. at each 
node. Time derivatives are written in a first order 
accurate explicit forward difference form. Second 
derivatives are calculated by second order accurate 
central differencing, except at the boundaries. There. 
a first order accurate one-sided differencing procedure 
is used, for these second derivative diffusion terms. 
The convection terms are differenced using the second 
upwind differencing scheme described by Roache [21]. 
Roache [21] notes that this formulation of the con- 
vection terms yields between first and second order 
accuracy. 

The Poisson equation for the streamfunction is inte- 
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grated using successive line over-relaxation (SLOR). 
The derivative in the direction normal to the surface 

is integrated implicitly. The integration is explicit in 

the streamwise direction. The velocities are then cal- 

culated from the streamfunction, using a first order 
center-differenced formulation. After the velocity and 
temperature fields are determined, the motion pres- 
sure equation is integrated, using SLOR. 

The extent of the field considered in these cal- 
culations was determined by preliminary calculations. 

A surface length, from x = 0 to 100, was chosen since 
this corresponds to a maximum value of Gr = 106, 
where the boundary layers are good approximations. 
The length corresponding to x = 100 is 8.9 cm, for 

air with properties evaluated at 22°C at a surface 
temperature excess of to-t, = 10°C. For water and 
the same temperature conditions, the length cor- 
responds to 7.7 cm. The locations of the distant 
boundaries, at x = - 1000 and at y = 1000, were 

chosen after preliminary calculations indicated that 
the calculated flow was not appreciably changed by 
increasing these distances. For example, changing the 
distant boundary to y = 1500 produced a change in 
the value of the streamfunction at y = 1000 of less 

than one part in ten thousand. 

3.1. Coordinate transformations 
In the foregoing formulation, the physical coor- 

dinates vary as - 1000 < x < 100 and 0 < y < 1000. 
Figure 3(a) shows the display of computational grid 
points, in physical space. The coordinate ranges are 
- 1000 < x < 100 and 0 < y < 1000. The isothermal 
vertical surface extends from x = 0 to 100, along the 
y = 0 axis. The grid lines are seen to be concen- 
trated near the surface, at small y, near the leading 
edge, at small x, near the outflow boundary, at 
x = 100, and near the distant boundaries, x = - 1000 
and y = 1000, to improve the accuracy of the cal- 
culations. The very large range of the physical coor- 
dinates used, and the variable spacing of the nodes, 
would require specification of the distance of each 
node from its neighbors. This would be inconvenient 
for efficient numerical calculation. Algebraic trans- 

formations, one for x and one for y are used to map 
this physical space (x, y) into the computational space 
(x’. y’) in Fig. 3(b). The resulting grid lines in the 
computational space are chosen to be evenly distrib- 
uted, for efficient calculation. The additional advan- 
tage of these coordinate transformations is that the 
computational coordinates vary only as 0 < x’ < 1 

and 0 < y’ < 1, over the whole range. 
Sills [23] proposed using either a simple trig- 

onometric or a simple algebraic function to transform 
the computation grid. Each of these transformations 
mapped the region 0 < x < co into the region 
0 < x’ < 1. Each transformation has an analytical 
inverse. A uniform grid in either of the transformed 
coordinates would group nodes near the origin upon 
inverse transformation to physical coordinates. Each 

transformation increases the spacing between the 
nodes, in the physical x coordinate, as x + co, that 

is, as x’ + 1. Riley [24] used an algebraic function to 

transform coordinates, for a finite difference model of 

the transient flow adjacent to a sphere. The radial 
coordinate was transformed such that 1 < V d a 
mapped to 0 < r d 1. The tangential coordinate, 0, 

was mapped so that -n<o<n mapped to 

- 1 < ,u < 1. The distant boundary conditions were 
then applied at a very large distance, in physical coor- 

dinates, from the sphere. 
Other coordinate transformations were also con- 

sidered. Thompson et al. [25] describe other trans- 
formations, such as adaptive grids. These grids change 
the spacing of the initially chosen computational grid, 
in response to the evolving flow calculation. The grid 
spacing is reduced in regions of large gradients of a 
dependent variable, such as velocity. The spacing is 

increased where the gradients are small. This method 
is useful for the finite difference modeling of complex 
geometries, for which regions of large gradients may 
not be known a priori. Such grids may also be very 

effective for transient flows in which the region of 
largest gradients of the dependent variables may 
change during the calculation. 

The physical coordinates of Fig. 3(a) were next 

transformed to the computational coordinates in Fig. 
3(b), in order to approximate better the boundary 
conditions. The x-coordinate has been transformed 

by 

x’ = k, exp[-b(x,,,- 41+ k2 exp I- 4~ - xm,dl 

+k,(xIa;?J;,‘. (17) 

The constants, k,, k,, k,, b, c, were chosen based on 
preliminary calculations, using coarse grid spacings 

and fewer nodes. The first term, in k,, maintains a 
close spacing of the nodes near the streamwise outflow 
boundary, for accurate modeling. It also closely 
spaces the nodes in the streamwise direction, near the 
surface. The second term, in k,, groups several nodes 
near the streamwise inflow boundary, that is, near 

x = - 1000. This gives a better approximation of the 
inflow boundary conditions than if a large grid 
spacing was used. The third term, in k,, spaces the 
streamwise nodes through the entrainment region 
upstream. The node locations are not changed during 
a calculation. The minimum value of x is set at 

%l,” = - 1000, 10 times the length of a downstream 
surface associated with Gr = 106. This position was 
specified after preliminary calculations had shown 

that no change occurred upon moving x,,, further 
downstream from the leading edge. 

The y-coordinate transformation is 

y’ = k,(l -exp(-aY))+(0.9-k,) 

+O.l exp(O.l0,-y,,,)). (18) 
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FIG. 3. (a) Numerical grid in physical coordinates, 41 x 41 nodes. Surface lies from 0 < x < 100 at .v 
(b) numerical grid in computational coordinates. 41 x 41 nodes. 
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The constants, k, and a, are also based on preliminary 
calculations. The first term groups l&20% of the 

nodes within the nominal boundary layer region. The 
boundary region is thicker further downstream and 
contains a higher percentage of the computational 
nodes than closer to the leading edge. The numerically 
calculated streamlines in Fig. 4(a) are seen to turn 

(4 

0 

Y 

FIG. 4. (a) Streamlines calculated for Pr = 0.72 and a 
maximum Gr = 106. The velocity boundary layer thicknesses 
from boundary layer theory and from the finite difference 
calculation are shown. Surface lies 0 < x < 100; (b) stream- 
lines near the leading edge of the surface calculated for 
Pr = 0.72. Shown for comparison are the temperature and 
velocity boundary layer thicknesses calculated using bound- 
ary layer theory and by the finite difference calculation. 

Surface lies 0 < x < 100. 

nearly vertical, within this boundary region. A very 
large density of nodes was required in order to resolve 
this flow accurately. The third term in equation (18) 
groups about 5% of the nodes near the distant y- 
boundary, y = 1000. These nodes are required to 
model accurately the zero shear stress boundary con- 
dition, as discussed above. The rest of the nodes are 
spaced approximately evenly throughout the entrain- 
ment region, by the second term in equation (18). 

3.2. Transformation parameters 
Transformation parameters and boundary dis- 

tances for the numerical analysis were determined by 

the results of preliminary calculations. The location 

of the boundaries, number of grid points and grid 
spacing at the boundaries were varied until the cal- 
culated results were found to be independent of the 

grid. The grid spacing near the boundaries was chosen 
to minimize the error incurred in applying the local 
boundary conditions. Recall Fig. 3(a). At the bound- 
aries, the calculation of the boundary conditions is 
often subject to additional errors. This results from 

the difficulty in modeling the second derivatives and 
the convection terms at the boundaries. The con- 
vection terms for the inflow and the outflow boundary 
conditions were found to be very sensitive to the node 
spacing. The nodes at the inflow and outflow bound- 
aries were spaced closely together, to minimize this 

error. This allowed the first order accurate and one- 
sided convection approximations, at the boundaries. 
These approximate the second order accuracy of the 
second upwind convection term formulation, as used 
in these calculations. The spacing of the nodes at 
the outflow boundary, and at the distant x- and y- 
boundaries, were varied until the solutions remained 
independent of the grid spacing. 

The grid spacing was determined from preliminary 
calculations. These were to minimize grid-dependent 
effects. Figure 5 shows the variation of the number of 
y-direction nodes on the integrated average wall shear 
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FIG. 5. Variation of calculated wall shear with number of y- 
direction nodes. 
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stress. The average wall shear was selected, as a mea- 
sure of the grid independence, since it is strongly 
dependent on the y-direction node spacing, adjacent 
to the vertical surface. Each calculation covered 101 
.x-direction nodes. The average wall shear reaches an 
asymptote at about 101 y-direction nodes. The cal- 
culated average wall shear varied less with varying 
number of x-direction nodes. The 101 .x-direction 
nodes were found to provide a grid independent solu- 
tion. 

The transport equations for vorticity and energy, 

and the Poisson equation for the streamfunction. were 
numerically integrated until the temperature, vorticity 
and streamfunction changed less than lOmh, at each 
grid point, during successive time steps. The flow 

within the boundary region, adjacent to the surface, 
converged quickly. For Pr = 0.12, the boundary 
region flow converged after about r = 20. The distant 

entrainment flow calculation required r > 180, for 
convergence. The temperature excess and vorticity 
changed slowly, in the leading edge entrainment 
region. These fields must diffuse away from the surface 
and into the local entrainment region. This pen- 
etration is opposed by the increasing rate of entrain- 
ment flow. 

After the calculation was terminated, energy and 
mass balances were calculated for the entire flow field. 
The calculated thermal conduction rate from the sur- 
face was compared with the increased temperature of 
the fluid flow, throughout the whole computational 
domain. Also, the mass flow rate across the inflow 
boundaries was found to be balanced by the flow 
crossing the outflow boundary. For the energy 
balance, the difference was less than one part in 105. 
For the mass balance, the difference was less than one 
part in IOh. 

4. RESULTS 

Calculated steady flow results are given for 
Pr = 0.73, typical of air, and Pr = 6.7, typical of 

water. The results are discussed below, in terms of the 

physical (.Y, y) coordinates. Comparisons of the finite 
difference results with similarity solutions of bound- 

ary layer flow are shown in the boundary layer simi- 
larity coordinate, q. The heated surface is located 
along the s-axis from .Y = 0 to 100. This range corrc- 
sponds to a maximum local Grashof number of 

Grrn.,\ = IO”, for both Pr = 0.72 and Pr = 6.7. 
Results are first shown in terms of streamhncs and 

isotherms, for both Pr = 0.72 and Pr = 6.7. The effect 
of varying the boundary conditions on the flow is 
examined. The size of the computational domain is 
first varied. Then, the distant entrainment tlow is com- 
pared with an inviscid flow calculation. Next. the new 
results of the velocity and temperature profiles are 
compared with those of classical boundary layer 
theory. These are in good agreement, sufficiently 
downstream from the leading edge. Then. some of the 

new results, such as local heat flux and local surface 
shear stress, are compared with the boundary layer 
results. Lastly, the resulting calculated motion pres- 
sure field is discussed. 

4.1. Culculuted,flmvfor Pr = 0.72 

Figure 4(a) shows the strcamlincs calculated for 
Pr = 0.72. The entire calculated entrainment region is 
shown. The local velocity boundary layer thicknesses 

were determined numerically, as C?,,(X), and by bound- 

ary layer theory. as 6(x). as shown. These thicknesses 
6,(x) and ii(x) are defined, for this buoyancy-induced 

flow. as the distance from the surface at which the 
streamwise velocity is 1% of the local maximum stre- 
amwise velocity, at that value of .y. The streamlines in 
the leading edge entrainment region indicate that the 
surface is approximately a sink. Over the range of 

0 < .Y d 100, the flow is locally more like a boundary 
layer entrainment flow. Recall Fig. 2(a). 

In Fig. 4(a), cS,,(.u) increases as .u approaches zero. 
This contradicts the boundary layer theory result. 

That theory specifies that the boundary layer thick- 
ness approaches zero as I approaches zero. Recall the 

definition of the 6(-u), as given above. Boundary layer 
theory also specifies that there is no induced flow 
ahead of the leading edge. That is, streamwise velocity 
is taken as zero throughout the entrainment region, 

.\- < 0. The new calculations assess the actual flow 
effects of the induced upstream Row at .Y d 0. The 
result is a much larger value for the streamwisc 

velocity. throughout the entrainment region, at .Y < 0. 
Thus. a larger boundary layer thickness arises, for this 
complete numerical calculation, as .Y approaches zero. 

An enlarged region around the leading edge is 
shown in Fig. 4(b). The actual streamline field shown 
is to be compared with a(_~), from boundary layer 

theory. and S,(.u). from the results from these cal- 
culations, respectively. In the region downstream 01 
the leading edge, and within S(.Y). the new results are 
similar to those of boundary layer theory. Recall Fig. 
2(a). The streamlines show the Row turning into the 

vertical buoyancy-driven flow within the boundary 
layer region. 

The entrainment streamlines derived from simple 
boundary layer theory are identically normal to the 
surface, evcrywherc outside the boundary region. 
Recall Fig. 2(a). That solution is only the first term ot 
the inner expansion of the solution of the full cqua- 
tions. It does not contain any information concerning 
the distant entrainment flow. The inflow entrainment 
region shown in Fig. 4(b) also includes the effects of 
the induced upstream entrainment. The entrainment 
region streamlines are here calculated to have some 
upflow component. This effect is similar to the entrain- 
ment flow calculated by Hieber [I I]. However, those 
results are not directly comparable, since they apply 
for a semi-infinite vertical surface beginning at .Y = 0. 

The calculated boundary layer thickness, cS,(.u). 
shown in Figs. 4(a) and (b). is greater than the bound- 
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ary layer result, 6(x). The boundary layer calculations 
assume no entrainment flow from upstream of the 
leading edge. Recall Fig. 2(a). Therefore, the bound- 
ary layer theory entrainment flow has an unre- 
alistically small u-component and larger v-compon- 
ent, for small values of .x, about x = 0. 

In the entrainment region at x d 0, upstream of the 
leading edge, the maximum vertical velocity arises 
along the y = 0 streamline. Since this is a line of sym- 
metry. au/@ = 0. The vanishing first derivative means 
there must be a local extremum in the streamwise 
velocity. It is a maximum. Above the leading edge, 
the entraining flow is retarded by the frictional drag at 
the surface. The several separated streamlines shown, 
which indicate the mass flow rate, slant away from 
the surface. This local effect is quickly overwhelmed, 
downstream of the leading edge, by fluid entrainment 
into the rapidly accelerating buoyant flow adjacent 
to the surface. Downstream of the leading edge, the 
boundary layer adjacent to the surface forms. The 
local maximum velocity then moves outward from the 
y = 0 streamline, owing to surface drag. The velocity 
along the surface remains zero, owing to the no-slip 
condition. A local maximum streamwise velocity then 
arises within the downstream developing boundary 
layer. 

4.2. Vurintion of’the boundmy cond~~ion~~~~ Pr = 0.72 
Figures 6(a)-(c) show the effects of the chosen dis- 

tant boundary conditions, at y = 1000. These cal- 
culations were made using a 61 x 6 1 node grid, instead 
of the 101 x 101 grid used for the rest of the calcu- 
lations. The larger grid spacing allowed efficient com- 
parison of many boundary conditions, by reducing 
the calculation time required for convergence to the 
steady solution. The 61 x 61 grid also reduced the 
resolution of the calculations. This is not an important 
effect for in comparing boundary conditions. Figures 
6(a~(c) are drawn fory extending to 1500. This allows 
comparison of the effect of changing the location of 
the distant y-boundary, on the calculations. 

The boundary conditions used to calculate the flow 
shown in Fig. 6(a) are the same as those used to 
calculate the flow in Fig. 4(a). The distant y-boundary 
conditions are specified at y = 1000. However, the 
plotted region is extended to y = 1500. The extended 
plotted region in Fig. 6(a) compares the streamlines 
with those in Figs. 6(b) and (c). Figure 6(b) shows 
streamlines calculated for distant y-boundary con- 
ditions specified at y = 1500. There is no appreciable 
difference in the position of these sets of streamlines. 
The $ = 0.8 streamline crosses y = 1000 at x = - 190 
for both circumstances, for example. This indicates 
that y = 1000 is suitable for the distant boundary. 
Figure 6(c) shows streamlines determined by inte- 
grating Laplace’s equation, V’$ = 0, for the distant 
induced inviscid ftow region. The distant boundary 
conditions are the same as those used for the solution 
of the full equations. The boundary conditions along 
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FIG. 6. (a) Streamlines for Pr = 0.72 and Gr,,, = IO”, distant 
y-boundary set at y = 1000. Computational grid is 61 x 61, 
Surface lies 0 < .Y < 100; (b) streamlines for Pr = 0.72 and 
a maximum Gr = 10h, distant y-boundary set at y = 1500. 
Computation1 grid is 61 x 61. Surface lies 0 < x < 100; (c) 
streamlines from solution of Euler’s equations in the entrain- 
ment region, for Pr = 0.72. The boundary condition for the 
streamfunction along the vertical surface is $ = 8,‘. Surface 

lies 0 < X < 100. 

y = 0 are Ic, = 0, for x < 0, and $ = ?“, x > 0, where 
rZ = x’+y’. This variation of $, along y = 0, x = 0, is 
the boundary condition for the inviscid outer flow, 
determined using boundary layer theory. Comparing 
the streamlines in Fig. 6(c) with those in Figs. 6(a) 
and (b) indicates that the distant boundary conditions 
used here, for the entrainment solution of the 
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FIG. 7. Isotherms calculated for Pr = 0.72. Velocity and 
temperature boundary layer thicknesses, from finite differ- 
ence calculation and boundary layer analysis, are shown. 

Surface lies 0 < .Y < 100. 

streamfunction, are appropriate for the distant flow. 
The streamlines calculated using the $ = r3’4 bound- 
ary condition, at J = 0, are for a smaller upflow at 

the distant boundary. This is shown by the smaller 
value of u = a$/Zy, in Fig. 6(c), compared with 

those in Figs. 6(a) and (b). 

The calculated isotherms, q5 = constant, for 
Pr = 0.72, are shown in Fig. 7. The fluid temperature 

decreases to the ambient temperature, away from the 
surface. Only the region near the vertical surface has 
an appreciable temperature excess. The temperature 
boundary layer thicknesses, 6,(n) and C&~(X), are shown 
for reference. The calculated thermal boundary layer 

thickness, 6tn(~~), agrees well with the result of bound- 
ary layer theory, 6,(x), for .X > 0. The effects of 
upstream conduction, at .Y < 0, that is, the tem- 
perature excess field upstream of the leading edge of 
the surface are appreciable. The C#J = 0.01 isotherm 
indicates the thermal boundary layer thickness. It 
extends below the leading edge, to about x = -7. 
This is the temperature effect in the leading edge 
entrainment region at x = 0. The comparable effect 
on velocity is less, in this leading edge region. This 
limited penetration of elevated temperature indicates 
that the motion pressure field induces the entrainment 
flow in the upstream region. 

4.3. Results jbr Pr = 6.7 
The results in Fig. 8(a), for Pr = 6.7, are similar to 

those in Fig. 4(a) for Pr = 0.72. The principal differ- 
ences are in the region adjacent to the surface. The 
enlargement in Fig. 8(b) clarifies the streamlines in the 
boundary layer region. The actual calculated bound- 

FIG. 8. (a) Streamlines calculated for Pr = 6.7 and a 
maximum Gr = 10h. The velocity boundary layer thicknesses 
from boundary layer theory and from the finite difference 
calculation are shown. Surface lies 0 < _Y < 100; (b) stream- 
lines near the leading edge of the surface calculated for 
Pr = 6.7. Shown for comparison are the temperature and 
velocity boundary layer thicknesses calculated using bound- 
ary layer theory and by the finite difference calculation. 

Surface lies 0 < li ,< 100. 

ary layer region, S,(x), and the boundary layer theory 
result, 6(x), are thicker than for Pr = 0.72. Both cal- 
culated thermal boundary layer thicknesses, 6,(x) and 
6,,(x), are thinner than for the Pr = 0.72 results. Iso- 
therms for Pr = 6.7 are shown in Fig. 9. The tem- 
perature excess is confined to a smaller region than in 
Fig. 7 for Pr = 0.72. This is the expected result for a 
larger Prandtl number. This suggests an increase in 
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FIG. 9. Isotherms calculated for Pr = 6.7. Velocity and tem- 
perature boundary layer thicknesses, from finite difference 
calculation and boundary layer analysis, are shown. Surface 

lies 0 < x < 100. 

viscous effects. relative to the buoyancy force effect in 
the boundary layer. 

4.4. Further cv~pur~~vn v~n~~er~cal resu1t.s and cvn- 
zrentional boundary layer theory 

The calculations for Pr = 0.72 are Further com- 
pared below with classical boundary layer theory 
results. These results follow from similarity analysis. 
See the many solutions in Gebhart et al. [I]. Similar 
considerations for Pr = 6.7 were discussed by Wright 

P% 
Similarity formulations transform the boundary 

layer equations from partial to ordinary differential 
equations. The r-coordinate becomes q. The variables 
(x,_r) are related to the similarity variable, v, as 

y Gr, Ii4 
r=; 4 

( ) =&. (19) 

The streamfunction, $, is written in terms of a func- 
tionf(q) as 

i)+,y) = 4v 
( ! 

L;qr, ‘I;-= 2Jivx”l+f. (20) 

The resulting streamwise and entrainment velocities, 
II and ~1, are 

(21) 

(22) 

FIG. 10. (a) Calculated streamwise velocity profile compared 
with the boundary layer theory result, for Pr = 0.72: (b) 
calculated horizontal entrainment velocity profile compared 
with the boundary layer theory result, for Pr = 0.72; (c) 
calculated temperature profiles compared with the boundary 

layer theory result. for Pr = 0.72. 
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where f’ = clfidv. The temperature excess ratio 
remains defined as r#~ = (t-f,.),(f,,- t,). 

Figure IO(a) compares the calculated streamwise 

component, u, with boundary layer results, in terms 
ofJ’. for Pr = 0.72. The difference in the numerically 

determined velocity profiles from boundary layer the- 
ory decreases downstream, as .Y increases. However, 
some difference does remain, even at large x = 100. 

This is due to the greater mass flow resulting from the 
increased entrainment from the region upstream of 
the leading edge. The induced horizontal entrainment 
flow, in Fig. IO(b), also shows increased agreement. 

for increasing x. Recall that the boundary layer for- 
mulation is not applicable outside the boundary layer 
region. It is merely the first term in an inner expansion 

of a perturbation solution of the full equations. How- 

ever, the boundary layer formulation becomes 
increasingly more accurate adjacent to the surface and 

far downstream of the leading edge. Recall that the 
boundary layer solution does not include an entrain- 

ment flow from the region upstream of the leading 
edge. The result is that the boundary layer solution 

has a smaller u-component, in the absence of the lead- 
ing edge entrainment. The numerical calculations 
show the effects of including the leading edge entrain- 
ment flow on the rest of the entrainment region. 

The numerical results also show that c is outward 

from the surface, in the leading edge region, as seen 
in Fig. IO(b). This outward flow results from drag 
as it encounters and passes the leading edge of the 

bounding surface. The flow deflects away from the 
surface in this region. around the leading edge. This 
effect amounts to the displacement of the local 

maximum u-velocity away from the _V = 0 axis, where 
it is for .Y < 0. The local maximum u-velocity moves 
to a position within the developing boundary layer, 
downstream of the leading edge. This trend continues 

only a short distance downstream of the leading edge. 
Thereafter, the c-direction flow, adjacent to the 

surface. reverses to that of coming towards the sur- 

face. 
The temperature excess ratio is mediated by con- 

duction, across the boundary region. As a result, there 
is less difference between the temperature excess ratio, 
4. found by numerical calculation and the classical 
boundary layer theory. Figure 10(c) shows the com- 
parison. However, the difference between the numeri- 

cal and boundary layer theory temperature profiles 
decreases downstream. 

4.5. Maximum streamwise velocity, surfbce heat ,flu.x 
und surface shear stress 

The calculated local maximum vertical velocity, U. 
as a function of X. is compared with the results of 
boundary layer theory, for Pr = 0.72, in Fig. II. 
Below the leading edge, the calculated maximum 
occurs at J = 0. Downstream of the leading edge, 
the local maximum u occurs within the downstream 
developing boundary layer. The boundary layer the- 

FIG. I 1. Calculated local maximum streamwise velocity com- 
pared with the boundary layer results, at a given X. for 

Pr = 0.72. 

ory excludes any flow ahead of the leading edge. The 
maximum values of u tend toward the classical bound- 
ary layer result, in the downstream boundary layer. 
Numerical results are slightly higher than those pre- 

dicted by boundary theory. This is again due to the 
inclusion of the leading edge entrainment flow in the 
new results. 

Figure 12(a) compares the calculated wall heat flux 
with boundary layer behavior. As with the tem- 
perature excess profiles, the numerical calculations 

and boundary layer results agree closely. However, 
the numerical calculation show a finite value for the 
heat flux at the leading edge. Classical boundary layer 
theory is unbounded there. Recall Fig. 2(b). The 
upstream conduction effect, around the leading edge, 
leads to bounded temperature gradients over the 

whole field. 
Figure 12(b) compares the computed surface shear 

stress, T,, = ~(&J/?~), with the boundary layer result. 
The downstream trends are similar. However, at the 
leading edge, boundary layer theory predicts a zero 
shear stress. This follows from u = 0. identically, at 
x = 0, as predicted by boundary layer theory. Recall 
equation (21). The boundary layer theory and numeri- 
cal results diverge as the leading edge is approached. 
There the numerically calculated shear increases. At 
the leading edge, the gradients become very large, as 
the flow changes to accommodate the surface and 
the no-slip condition there. arising at .Y = 0. Similar 

results arise for the maximum u, the surface heat flux 
and the surface shear stress. for Pr = 6.7, as discussed 
in Wright [22]. 

4.6. Motion pressure.field 
The calculated motion pressure isobars, shown as 

dashed lines, and the streamlines, for Pr = 0.72. are 
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FIG. 12. (a) Calculated local surface heat Aux compared with that from boundary layer theory, for 
Pr = 0.72; (b) calculated local wall shear stress compared with that from boundary layer theory, for 

Pr = 0.72. 

shown in Fig. 13. All values of the isobars are negative. 
This arises because the motion pressure is the deficit 
from the distant ambient pressure, pm, owing to the 
combined effects of motion, viscosity and buoyancy. 
The largest magnitude of the motion pressure occurs 
near the leading edge. The value is p = - 0.5054. The 
isobar p = -0.05 lies outside the boundary layer. It 
is little influenced by the effects of viscosity or buoy- 
ancy. It coincides with the dynamic pressure due to 
an inviscid entrainment flow. The calculated isobars 

-.I 
0 20 40 MI 80 1w 

Y 

FIG. 13. Calculated streamlines and motion pressure isobars, 
for Pr = 0.72 and Gr = 106. Surface lies 0 < .x 4 100. 

contain some anomalies, very far from the surface. 
This arises at isobaric values that are less than 10% of 
the maximum calculated motion pressure. The error 
arises in calculating the pressure field from the stre- 
amfunction field. The streamfunction is an integration 
of the velocity. The result is that errors in the cal- 
culated velocity are smoothed when shown as stream- 
lines. The pressure, however, is a differentiation of 
the velocity, This amplifies the effects, on the motion 
pressure, of errors in the numerically calculated vel- 
ocity. 

The variation of p at y = 0, along the surface, is 
shown in Fig. 14. The greatest magnitude is near the 
leading edge. The immediate leading edge is a region 
of very large vorticity generation. The flow first 
encounters the surface and is retarded by the no-slip 
condition there. This vorticity generation causes the 
large increase in the magnitude of the motion pressure 
at this location. 

5. CONCLUSIONS 

The steady entrainment flow has been calculated for 
a vertical isothermal surface, Gr,,, = 106, for fluids 
of Pr = 0.72 and Pr = 6.7. The physical coordinates 
were transfo~ed to allow the boundary conditions 
to be specified far out from both the surface and its 
leading edge. A streamfunction-vorticity form of the 
Navier-Stokes equations was numerically integrated 
to calculate the velocity and the temperature fields. 
The Poisson equation for the motion pressure was 
integrated after these fields had been determined. 

The entrainment flows found follow the trend sug- 
gested by previous perturbation analyses, for a semi- 
infinite vertical surface. Inclusion of the leading edge 
entrainment tlow increases the boundary layer thick- 
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research was conducted using the Cornell National Super- 
computer Facility. 
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FIG. 14. Calculated motion pressure deficiency as a function 
of s, along 4‘ = 0, for Pr = 0.72. Surface lies 0 < x < 100. 

ness, immediately downstream of the leading edge of 
the surface. Further downstream, the boundary layer 
6, converges to approximately the boundary layer 
trend. The numerical calculation predicts a slightly 
greater 6,, owing to the increased mass flow rate 
resulting from the included entrainment. The tem- 

perature boundary region thickness agrees well with 
the classical boundary layer results, downstream of 

the leading edge. The temperature field is largely deter- 
mined by thermal conduction. It is insensitive to the 
small differences in the boundary region flow cal- 
culated here and by boundary layer theory. The 

numerical calculations show that conduction also 
plays a significant role in extending the temperature 
field upstream of the leading edge. 

The agreement of the temperature and velocity pro- 
files with classical boundary layer theory is increas- 
ingly close, downstream of the leading edge. Near the 

leading edge, the streamwise velocity is greater than 
the boundary layer result. The heat flux and shear 
stress, along the surface, closely follow the trend of 
boundary layer theory. The calculated maximum stre- 
amwise velocity is greater, owing to the higher leading 
edge entrainment flow. The motion pressure field due 
to the buoyancy-induced flow adjacent to the surface, 
drives this entrainment flow. The motion pressure 
deficit is greatest at the surface leading edge. This 
results in the leading edge region acting as a mass 
sink, for both the upstream and the lateral entrain- 
ment flows. 
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